Extensions 1→N→G→Q→1 with N=C2×C22.F5 and Q=C2

Direct product G=N×Q with N=C2×C22.F5 and Q=C2
dρLabelID
C22×C22.F5160C2^2xC2^2.F5320,1606

Semidirect products G=N:Q with N=C2×C22.F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C22.F5)⋊1C2 = D10⋊M4(2)φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5):1C2320,1032
(C2×C22.F5)⋊2C2 = Dic5⋊M4(2)φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5):2C2320,1033
(C2×C22.F5)⋊3C2 = D109M4(2)φ: C2/C1C2 ⊆ Out C2×C22.F580(C2xC2^2.F5):3C2320,1093
(C2×C22.F5)⋊4C2 = C5⋊C87D4φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5):4C2320,1111
(C2×C22.F5)⋊5C2 = C202M4(2)φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5):5C2320,1112
(C2×C22.F5)⋊6C2 = (C2×D4).7F5φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5):6C2320,1113
(C2×C22.F5)⋊7C2 = (C2×D4).9F5φ: C2/C1C2 ⊆ Out C2×C22.F5808-(C2xC2^2.F5):7C2320,1115
(C2×C22.F5)⋊8C2 = C24.4F5φ: C2/C1C2 ⊆ Out C2×C22.F580(C2xC2^2.F5):8C2320,1136
(C2×C22.F5)⋊9C2 = C2×C23.F5φ: C2/C1C2 ⊆ Out C2×C22.F580(C2xC2^2.F5):9C2320,1137
(C2×C22.F5)⋊10C2 = C2×D4.F5φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5):10C2320,1593
(C2×C22.F5)⋊11C2 = Dic5.C24φ: C2/C1C2 ⊆ Out C2×C22.F5808-(C2xC2^2.F5):11C2320,1594
(C2×C22.F5)⋊12C2 = C2×D5⋊M4(2)φ: trivial image80(C2xC2^2.F5):12C2320,1589

Non-split extensions G=N.Q with N=C2×C22.F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C22.F5).1C2 = C22⋊C4.F5φ: C2/C1C2 ⊆ Out C2×C22.F5808-(C2xC2^2.F5).1C2320,205
(C2×C22.F5).2C2 = C22.F5⋊C4φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5).2C2320,257
(C2×C22.F5).3C2 = Dic5.C42φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5).3C2320,1029
(C2×C22.F5).4C2 = C20⋊C8⋊C2φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5).4C2320,1034
(C2×C22.F5).5C2 = C208M4(2)φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5).5C2320,1096
(C2×C22.F5).6C2 = C2×Dic5.D4φ: C2/C1C2 ⊆ Out C2×C22.F5160(C2xC2^2.F5).6C2320,1098
(C2×C22.F5).7C2 = C4×C22.F5φ: trivial image160(C2xC2^2.F5).7C2320,1088

׿
×
𝔽